jueves, 17 de noviembre de 2016

Diseño de puentes



Análisis de puentes:

ELEVACIÓN DE UN PUENTE Estribo 1 Estribo 2 NAME NAMO NAMIN Perfil de socavación Relleno compactado al 90 % Proctor Lavaderos, defensas y guarnicionesSuperestructura Parapeto Terreno natural Libre bordo Claro Longitud total
 Sección transversal de Superestructura Losa Parapeto peatonalParapeto vehicular Trabes aashto Diafragmas
 CARGA PEATONAL M = wl² 8 En donde: M= Momento flexionante w= Carga peatonal (295 kg/m²) l= Longitud de la banqueta (m)
 ANALISIS Y DISEÑO DE LOSA Mcm = ω L 2 12 T T TT Vcm = ω L 2 Mcv = S + 0.61 9.74 x P T T T Momento por Carga Muerta Cortante por Carga muerta Momento por Carga Viva (Aashto)
 ANALISIS DE VOLADO Mcv = P x d E Vcv = P E P = Peso de una llanta más el impacto E = Ancho de distribución Momento por Carga Viva Cortante por Carga Viva Mcm = W x L 2 2 Vcm = W x L Momento por Carga Muerta Cortante por Carga muerta
 Wcm ESFUERZOS POR CARGA MUERTA M = wl² 8 Wcm= Peso de losa Peso de asfalto Peso de diafragmas Peso propio Peso de parapetos Peso peatonal
 Wcv ESFUERZOS POR CARGA VEHICULAR Wcv= HS-20 IMT-20.5 T3-S3 T3-S2-R4 IMT-66.5
1010 CARGAVEHICULAR
1111 Σ M2 = R1 L – P ( L-x )Sabemos que: P = P1 + P2 P ( L-x ) L Σ M1 = R2 L – Px Px L P a P P12 R R1 2 L bx 3 R1 = R2 =
1212 M3 = R2 (L-x-b) Sustituyendo el valor de R2 tenemos: M3 = Px L ( L-x-b) L M3 = Px – Px2 - Pxb L P a P P1 2 R R1 2 L bx 3
1313 1 – 2x – b = 0 L L - 2x = b - 1 L L 2x = 1 - b L L Despejando “x”, tenemos: X= ( 1-b )L 2 = L 2 2 b = L - b 2 - L Buscamos el valor de “x” para que se produzca el Momento Máximo, para lo cual derivamos: d Mx d x = P – 2Px - Pb L L Igualando a 0 (cero) y dividiendo entre P
1414 P P P12 R R1 2 L b x 3 L / 2 L / 2 CL LC b/2 b/2 a CONCLUSION: EN UNA VIGA LIBREMENTE APOYADA EN SUS EXTREMOS SUJETA A UN TREN DE CARGAS MÓVILES, CUYAS DISTANCIAS PERMANEZCAN CONSTANTES, EL MOMENTO FLEXIONANTE MÀXIMO OCURRE: “CUANDO UNA DE LAS RUEDAS Y LA RESULTANTE DE LA CARGA EQUIDISTAN DEL CENTRO DEL CLARO”
1515
1616
1717
1818
19
2020 I = 15.24 L + 38 I = Impacto L = Longitud del Claro (m) I M P A C T O Es el incremento en porcentaje del peso de un camión del peso de un camión al entrar y transitar por la superestructura
2121 Fc = Factor de concentración nt = Cantidad de trabes e = Distancia de la carga al centro d = Distancia entre trabes C O U R B O N Fc = 1 + 6 (nt + 1) (2n) nt² - 1 (e) d nt P P FACTOR DE CONCENTRACIÓN DE CARGA Porcentaje de las cargas vehiculares que se le atribuye a cada trabe en virtud de que éstas se encuentran a diferente distancia del centro de la superestrctura
2222 DISEÑO DE LA LOSA Y TRABE 𝐹𝑐 = 0.4 ∙ 𝑓′ 𝑐 k= 1 1 + 𝐹𝑠 𝑛 ∙ 𝐹𝑐 𝑛 = 𝐸𝑠 𝐸𝑐 𝑗 = 1 − 𝑘 3 𝐾 = 𝐹𝑐 ∙ 𝑘 ∙ 𝑗 2 Constantes de cálculo
2323 DISEÑO (continuación) Revisión de la sección (profundidad del eje neutro) 𝑘𝑑 = −𝑏 ± 𝑏2 − 4𝑎𝑐 2𝑎 Profundidad de compresión 𝑗𝑑 = 𝑑 − 𝑍 𝑍 = 𝑥 3 Obtención del brazo del par de fuerzas
2424 24 Obtención de la compresión Obtención del momento resistente Esfuerzo actuante 𝐹𝑐 > 𝑓𝑐 𝑓𝑐 = 𝑀 0.5 ∙ 𝑘𝑑 ∙ 𝑏 ∙ 𝑗 ∙ 𝑑 Comparación del esfuerzo actuante con el resistente Revisión de la compresión 𝐶 = 0.5 ∙ 𝑘𝑑 ∙ 𝑏 ∙ 𝑓𝑐 𝑀 = 𝐶 ∙ 𝑗 ∙ 𝑑 𝑀 = 0.5 ∙ 𝑘𝑑 ∙ 𝑏 ∙ 𝑓𝑐 ∙ 𝑗 ∙ 𝑑≈ DISEÑO (continuación)
2525 Cálculo del acero de refuerzo Se propone acero Cálculo de la tensión 𝑀 = As ∙ 𝑓𝑠 ∙ 𝑗 ∙ 𝑑Entonces Revisión de la tensión 𝑇 = 𝐴𝑠 ∙ 𝑓𝑠 𝐴𝑠 = 𝑀 𝑓𝑠 ∙ 𝑗 ∙ 𝑑 𝐴𝑠𝑓 = 𝑎𝑠 ∙ 100 𝑆 y como 𝑀 = 𝑇 ∙ 𝑗 ∙ 𝑑 DISEÑO (continuación)
2626 𝑓𝑠 = 𝑀 𝐴𝑠 ∙ 𝑗 ∙ 𝑑 Se sustituye Revisión de la tensión 𝐹𝑠 > 𝑓s Comparación del esfuerzo actuante con el resistente DISEÑO (continuación)
2727 𝑣 = 𝑉 𝑏 ∙ 𝑑 Esfuerzo cortante actuante Revisión por cortante en losa 𝑉𝑐 = 0.95 𝑓′𝑐 (f’c en psi) Esfuerzo cortante resistente 𝑣 𝑟𝑒𝑠 > 𝑣 act Comparación del esfuerzo actuante con el resistente DISEÑO (continuación)
2828 𝑆 = 𝑎𝑣 ∙ 𝐹𝑠 ∙ 𝑛 𝑉𝑐 ∙ 𝑏 Obtención de la separación de los estribos Revisión por cortante en trabe 𝑉𝑐 = 0.95 𝑓′𝑐 (f’c en psi) Esfuerzo cortante resistente 𝑣 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑜 + 𝑣(𝑎𝑐𝑒𝑟𝑜) > 𝑣 act Comparación del esfuerzo actuante con el resistente DISEÑO (continuación)
2929 Análisis y diseño de estribos Y ASOCIADOS, S.C.
3030 Relleno de piedra de pepena desquebrajada de 25cm de espesor. Cuerpo y aleros de concreto Ciclópeo de f’c=150kg/cm² Elev. de desplante Estribo 1= 1504.695m Estribo 2= 1504.617m Espacio para izado de 30x30x25cm Tubo de PVC de 10cm de øTalud de 1:4
3131 COMPORTAMIENTO DE MUROS DE CONTENCIÓN VOLTEAMIENTO DESLIZAMIENTO ESFUERZO W b/2 = MR μ W Fad Terreno E n3 MA E ˃1 F ma x ˃1 PUENTES 2 2 1.2 WΣFv MΣFH μ ΣFv ΣFH ˃1 Fy + M A y I ˃1Cv = CD = Cy = S =
3232 Wcm = carga muerta superestructura Wcv = carga viva Wimp + cc = impacto + concentración de carga Wt = peso tierra Wpp = peso propio estribo E1 = Empuje E2 = Empuje por sobrecarga Fr = Frenaje Fs = Sismo Fv = Viento Ft = Temperatura MR = ΣFx X MA = ΣFy Y
3333 CARGA DE SUPERESTRUCTURA CARGAS VERTICALES Wcm= Peso de losa Peso de asfalto Peso de diafragmas Peso propio Peso de parapetos Peso peatonal Wcv= HS-20 IMT-20.5 T3-S3 T3-S2-R4 IMT-66.5
3434 CARGA MUERTA DE SUBESTRUCTURA CARGAS VERTICALES (continuación) W= Peso propio Peso de las cuñas de tierra
3535 Empujes de tierras - Sismo - CARGAS HORIZONTALES Fricción Frenaje Viento
3636 CARGAS HORIZONTALES (continuación)
3737 Se debe considerar una fuerza provocada por el efecto del frenaje de los vehículos que transitan por la superestructura. Se considera en dirección horizontal, en sentido longitudinal, pero a una altura de 1.8 metro de la rasante, su valor se estima como el 5% de la carga viva vehicular que actúa en cada uno de los carriles (aplicando las consideraciones de los factores de reducción según el número de carriles). En la obtención de esta fuerza no se debe incluir el impacto. CARGAS HORIZONTALES (continuación) Frenaje
3838 El empuje de tierras sin sobrecarga se determina así con la fórmula de Rankine: K x W x h² E = 2 1 – sin Α K = 1 + sin A En donde: E= empuje de tierra W= peso volumétrico del material. h= altura del material A=ángulo de reposo del material. El material que se ocupa en los terraplenes, en este caso para los accesos, comúnmente tienen un talud de 1.5:1. Con esta inclinación se presenta un ángulo de reposo del material del orden de los 33°41’. 1-sin 33°41’ 1+sin 33°’41 = 0.286Entonces: K = 0.286 x 1,600 x 6.09² 2 = 8.495 tonPor lo tanto: E = CARGAS HORIZONTALES (continuación) Empuje de tierra
3939 Tipo I.- Suelo Rígido y estable o roca de cualquier naturaleza con espesor no menor a 60 m. Tipo II.- Suelos formados de arcillas semirígidas o suelos friccionantes con espesor igual o mayor a 9 metros sobre estrato de suelos tipo I. Tipo III.- Suelos formados por limos o arcillas blancas con espesor igual o mayor a 12 metros sobre estrato de suelos tipo I. En la consideración del comportamiento dinámico de los suelos en donde se construyen las estructuras, se consideran tres tipos de suelos basados en resultados de exploraciones geotécnicas. Sismo CARGAS HORIZONTALES (continuación)
4040 El método simplificado utilizado la siguiente fórmula: En donde: S= Fuerza horizontal equivalente c= Coeficiente que se obtiene de la tabla de espectros sísmicos para estructuras tipo B Q = Factor de comportamiento sísmico W = Peso de la estructura La relación c/Q no deberá ser menor que ͣ0 de la tabla de espectros sísmicos para estructuras tipo B WQ c S = CARGAS HORIZONTALES (continuación) Sismo
4141 Valores del espectro sísmico para estructuras tipo B Sismo
4242 FALLA SECCIÓN INTERMEDIA
4343 REVISIÓN DE GRUPOS Esfuerzo máximo en el desplante: ton/m² Fuerza vertical (Fv): ton Fuerza horizontal (Fh): ton Momento vertical (Mv): ton m Momento horizontal (Mh): ton m Base del estribo (b): m Área (A): m² Centro de cargas (y=b/2): m Grupo I %
4444 TABLA DE LOS COEFICIENTES γ y β
4545 REVISIÓN DE GRUPOS Excentricidad en la cimentación del estribo para el grupo I Centro de gravedad: Fv Excentricidad: Momento de diseño Por tratarse del grupo I, el esfuerzo del terreno no sufre cambio, ya que se debe considerar el 100% de su valor 2 Momento de inercia I’ = b x h
4646 COMO ENCONTRAR ΣF, ΣFX, ΣMΑ Y ΣMR MOMENTO (ton-m) GRUPO CARGAS Fv VERTICALES (ton) FH HORIZONTALES (ton) BRAZO (m) VERTICALES HORIZONTALES Wcm Wcv WImp+cc Wt Wpp 14,2 4.3 1,3 11,1 40,3 2,30 2,30 2,30 3,41 2,28 32.66 9.89 2.99 37.85 91.88 E=E1+E2 Fr Fs Fv Ft 26,0 0,01 0,8 0,3 0,6 3,44 7,40 7,40 7.40 7,40 89.44 0.07 5.92 7.23 4.44 ΣFv = 71.2 ΣFH = 27.41 ΣMv = 175.27 ΣMH = 99.87
4747 Wy MH ˃1Cv = Fy Fx ˃1CD = μ PUENTES 2 2 Fy A f max y min 1 + I x b b My - Mx A = e = 2 F 6e b =
4848 E a a’ b b’ TT ¿ DONDE FALLARA ?  EN EL CUERPO DE LA PILA
4949 fmax a a’ C I ΣFx ΣFy PROCESO EN EL CUERPO DE LA PILA  HACER ANALISIS INTERVINIENDO TODAS LAS CARGAS HASTA LA SECCION a-a’  REVISAR EN ESTA SECCIÓN LOS ESFUERZOS QUE SE PRESENTAN  NO DEBE HABER TENSIONES
5050 REVISIÓN DEL ESCALON Esfuerzos en el desplante para el grupo I
5151 Diseño del cabezal Empujes de tierras - Sobrecarga - Fricción - Frenaje - Sismo -
5252 FALLAS POR SOCAVACION
5353 PUENTE “MICHIAPA” – Falló por falta de inspección periódica ( cada año ) que debe hacer el ingeniero de puentes o el de conservación del camino.
5454 Un lugareño nos expreso: “Antes que el estribo fallara, nos bañabamos y se podia uno meter debajo de la cimentación”
5555 Análisis y diseño De Pilas Y ASOCIADOS, S.C.
5656 Fd= Fza dinámica del agua Fs = Sismo Fv = Viento Ft = Temperatura Wcm = carga muerta superestructura Wcv = carga viva + impacto Wpp = peso propio pila Cargas Verticales Fr = Frenaje Fs = Sismo Fv = Viento Ft = Temperatura
5757 DISEÑO DEL CABEZAL P M V Esfuerzos a los que estará sujeto el cabezal Armado del cabezal
5858 Sismo Q C S= W En donde: S= Fuerza horizontal equivalente c= Coeficiente que se obtiene de la tabla de espectros sísmicos para estructuras tipo B Q = Factor de comportamiento sísmico W = Peso de la estructura FUERZA SÍSMICA
5959 Valores del espectro sísmico para estructuras tipo B
6060 FUERZA POR VIENTO Viento Transversal Longitudinal En Carga viva: 0.15 ton/m 0.059 ton/m (a una altura de 1.8 sobre la rasante) En superestructura: 0.25 ton/m2 0.06 ton/m2 En subestructura: 0.2 ton/m2
6161
6262 Y X Wt Wpp E1 + E2 Fr + Fs + Fv + Ft Wcm + Wcv+imp + cc DISEÑO DE LA COLUMNA
6363 DISEÑO DE LA COLUMNA Revisión por efecto de esbeltez Los efectos de esbeltez se pueden despreciar cuando (KH’/r)<22 Donde: H’= Altura efectiva r = Radio de giro k= factor que depende si la columna es contraventeada o no lo es. Wt E1 + E2
6464 W b/2 = MR M W Fad. TerrenoE nʒ MA E ˃1 F ma x ˃1 2 2 1.2 WΣFv MΣFH ΣFv ΣFH ˃1 Fv + M A y I VOLTEAMIENTO DESLIZAMIENTO ESFUERZO Cy = CD = Cy = M = S =
6565 DISEÑO DEL CABEZAL 𝐹𝑐 = 0.4 ∙ 𝑓′ 𝑐 k= 1 1 + 𝐹𝑠 𝑛 ∙ 𝐹𝑐 𝑛 = 𝐸𝑠 𝐸𝑐 𝑗 = 1 − 𝑘 3 𝐾 = 𝐹𝑐 ∙ 𝑘 ∙ 𝑗 2 Constantes de cálculo
6666 DISEÑO (continuación) Revisión de la sección (profundidad del eje neutro) 𝑘𝑑 = −𝑏 ± 𝑏2 − 4𝑎𝑐 2𝑎 Profundidad de compresión 𝑗𝑑 = 𝑑 − 𝑍 𝑍 = 𝑥 3 Obtención del brazo del par de fuerzas
6767 Obtención de la compresión Obtención del momento resistente Esfuerzo actuante 𝐹𝑐 > 𝑓𝑐 𝑓𝑐 = 𝑀 0.5 ∙ 𝑘𝑑 ∙ 𝑏 ∙ 𝑗 ∙ 𝑑 Comparación del esfuerzo actuante con el resistente Revisión de la compresión 𝐶 = 0.5 ∙ 𝑘𝑑 ∙ 𝑏 ∙ 𝑓𝑐 𝑀 = 𝐶 ∙ 𝑗 ∙ 𝑑 𝑀 = 0.5 ∙ 𝑘𝑑 ∙ 𝑏 ∙ 𝑓𝑐 ∙ 𝑗 ∙ 𝑑≈ DISEÑO (continuación)
6868 Cálculo del acero de refuerzo Se propone acero Cálculo de la tensión 𝑀 = As ∙ 𝑓𝑠 ∙ 𝑗 ∙ 𝑑Entonces Revisión de la tensión 𝑇 = 𝐴𝑠 ∙ 𝑓𝑠 𝐴𝑠 = 𝑀 𝑓𝑠 ∙ 𝑗 ∙ 𝑑 𝐴𝑠𝑓 = 𝑎𝑠 ∙ 100 𝑆 y como 𝑀 = 𝑇 ∙ 𝑗 ∙ 𝑑 DISEÑO (continuación)
6969 𝑓𝑠 = 𝑀 𝐴𝑠 ∙ 𝑗 ∙ 𝑑 Se sustituye Revisión de la tensión 𝐹𝑠 > 𝑓s Comparación del esfuerzo actuante con el resistente DISEÑO (continuación)
7070 𝑣 = 𝑉 𝑏 ∙ 𝑑 Esfuerzo cortante actuante Revisión por cortante 𝑉𝑐 = 0.95 𝑓′𝑐 (f’c en psi) Esfuerzo cortante resistente 𝑣 𝑟𝑒𝑠 > 𝑣 act Comparación del esfuerzo actuante con el resistente DISEÑO (continuación)
7171 𝑆 = 𝑎𝑣 ∙ 𝐹𝑠 ∙ 𝑛 𝑉𝑐 ∙ 𝑏 Obtención de la separación de los estribos Revisión por cortante 𝑉𝑐 = 0.95 𝑓′𝑐 (f’c en psi) Esfuerzo cortante resistente 𝑣 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑜 + 𝑣(𝑎𝑐𝑒𝑟𝑜) > 𝑣 act Comparación del esfuerzo actuante con el resistente DISEÑO (continuación)
7272 DISEÑO DE LA COLUMNA =1.5% – 2% Se propone la cuantía de acero r Revisión por agrietamiento 𝑒𝑥 𝑏 + 𝑒𝑦 ℎ < 0.5 Revisión por efectos de esbeltez 𝑘ℎ 𝑟 < 22 Revisión en el sentido X
7373 DISEÑO (continuación) 𝒓 𝒆 pn pn Se entra a la gráfica con los siguientes valores: 𝒓 𝒆 pn Y se obtienen los siguientes valores: k c c

7474 Con los datos obtenidos de la gráfica se obtiene el esfuerzo actuante del concreto: DISEÑO (continuación) 𝑓𝑐 = 𝑐 ∙ 𝑀 𝑝𝑖 ∙ 𝑟3 𝐹𝑐 𝑟𝑒𝑠 > 𝑓𝑐 (𝑎𝑐𝑡) Comparación del esfuerzo del concreto actuante con el resistente Con los datos obtenidos de la gráfica se obtiene el esfuerzo actuante del acero: 𝑓𝑠 = 𝑛 ∙ 𝑓𝑐 ∙ ( 1 𝑘 − 1) 𝐹𝑠 𝑟𝑒𝑠 > 𝑓𝑠 (𝑎𝑐𝑡) Comparación del esfuerzo del acero actuante con el resistente
7575 DISEÑO DE LA COLUMNA Para la revisión de la columna en el sentido Z se procede de la misma manera antes descrita, solo que se hace intervenir los datos en el otro sentido Revisión en el sentido Z
7676 𝑣 = 𝑉 𝑏 ∙ 𝑑 Esfuerzo cortante actuante Revisión por cortante de la columna 𝑉𝑐 = 0.95 𝑓′𝑐 (f’c en psi) Esfuerzo cortante resistente 𝑣 𝑟𝑒𝑠 > 𝑣 act Comparación del esfuerzo actuante con el resistente DISEÑO (continuación)
7777 PTE JALAPA COSTA DE CHIAPAS ESCOINTLA
7878 78 Puente La Fortuna Ubicado en la localidad de Despoblado Chiapas
7979 79 Puente La Fortuna Ubicado en la localidad de Despoblado Chiapas Espacio entre las dos estructuras en donde se observa el nivel de azolve que a lo largo de los años se ha logrado acumular
8080 80
8181
8282 Sugerencias Y ASOCIADOS, S.C.
8383 ¿QUE HACEMOS PARA CAMBIAR LOS APOYOS DE NEOPRENO? Sube Sube Gatos Calzas Bloque de gateo
8484 ¿QUE HACEMOS PARA CAMBIAR LOS APOYOS DE NEOPRENO? Sube Sube Gatos Calzas Bloque de gateo
8585 ¿QUE HACEMOS PARA CAMBIAR LOS APOYOS DE NEOPRENO? Sube Sube Gatos Calzas Bloque de gateo Neoprenos nuevos
8686 ¿QUE HACEMOS PARA CAMBIAR LOS APOYOS DE NEOPRENO? Baja Baja Gatos Calzas Bloque de gateo
8787 ¿QUE HACEMOS PARA CAMBIAR LOS APOYOS DE NEOPRENO? Baja Baja Gatos Calzas Bloque de gateo
8888 88 ELEVACION DE SUPERESTRUCTURA MEDIANTE GATOS HIDRAULICOS. CONSTRUCCION DE MENSULAS PARA GATEO Y CAMBIO DE APOYOS.
8989 DIAFRAGMAS PARA GATEO NICHOS PARA GATEO BLOQUES DE GATEO OPCIONES DE ELEMENTOS PARA GATEO DE SUPERESTRUCTURA DESDE PROYECTO.
9090 CIMENTACION INSUFICIENTE Y SUPERESTRUCTURA CON CLAROS SIMPLEMENTE APOYADOS Puente Tubul
9191 Que pasa con los puentes que tienen insuficiente rigidez debido a la ausencia de diafragmas? cabezal cabezal Nichos de izaje diafragma Trabes presforzadas Dispositivo antisísmico Apoyos de neopreno Nicho de izaje Banco W W
9292 Puente Zacatal.
9393 Puente Pijijiapan.
9494
9595
9696 Juntas WR capacidad de movimiento de 50 a 75 mm Juntas WOSd capacidad de movimien
to de 50 a 100 mm Juntas Wd capacidad de movimiento de 60 a 230 mm

ejemplos:






































jueves, 3 de noviembre de 2016

Qué es el análisis de suelos en la ingeniería civil



Importancia del análisis de suelos:

¿Qué es?

El Estudio de Mecánica de Suelos , es un documento suscrito por un especialista reconocido y acreditado en mecánica de suelos, a través del cual determina la resistencia del terreno sobre el que se desplantan las edificaciones, mismo que sirve de base para determinacr el tipo de cimentacion a usar. El Estudio de Suelos ó Estudio Geotécnico es parte de la Mecánica de Suelos.

El estudio de suelos permite conocer las propiedades físicas y mecánicas del suelo, y su composición estratigráfica, es decir las capas o estratos de diferentes características que lo componen en profundidad, y por cierto ubicación de napas de agua (freáticas), si las hubiere.



Procesos para el análisis:

1. Introducción:

Donde se indique el alcance del Informe Geotécnico y a cual tipo de obra está dirigido. En este punto se recomienda dejar claro el nombre del proyecto para el cual fue elaborado el informe e indicar el ente que lo solicita, con la finalidad de evitar que el mismo pueda ser utilizado para otros fines.

2. Descripción del Proyecto:

Donde se indique el uso de la edificación, materiales constructivos (acero, concreto, madera, etc.), orden de magnitud de las cargas consideradas, altura de la edificación, extensión en planta, descripción de características arquitectónicas y estructurales tales como: altura total de la edificación, presencia de sótanos, alturas de entrepiso, entre otras.

3. Objetivos:

Se debe indicar el objetivo general del informe y los objetivos específicos que permitirán alcanzarlo. Los objetivos de un Informe Geotécnico para la construcción de una vialidad son totalmente diferentes a los planteados en la construcción de un edificio o una vivienda, porque además la forma en la que se efectúa la investigación geotécnica, tanto en campo como en laboratorio, puede diferir en gran medida.

4. Metodología:

Se compone de los procedimientos utilizados para efectuar la investigación de campo, laboratorio, fuentes de información, procesamiento de datos y métodos de análisis.

5. Ensayos de Campo:

Se especifican los procedimientos empleados para realizar la investigación de campo, equipos utilizados, normativa aplicable (ASTM, COVENIN, etc.), número de sondeos efectuados, profundidad de los mismos, cantidad de muestras obtenidas y una breve pero clara justificación de por qué se utilizan tales procedimientos para cumplir con los objetivos planteados en la investigación geotécnica.

6. Ensayos de Laboratorio:

El laboratorio juega un papel fundamental en todo proceso de investigación geotécnica. Las muestras obtenidas en campo deben ser procesadas en laboratorio, con la finalidad de obtener parámetros que son utilizados por el ingeniero geotécnico para analizar el comportamiento del terreno y plantear soluciones al sistema «suelo-fundación».

7. Geología:

El analizar el contexto geológico en el que se encuentra el proyecto, significa poder comprender la naturaleza de las diferentes amenazas a las que podría estar expuesto el mismo. No se trata de extraer la teoría clásica existente en los libros de geología, sino más bien comprender que un proyecto concebido en una zona del litoral tendrá una amenaza muy diferente al proyecto que sea concebido a piedemonte. Se trata de analizar no sólo la geología regional sino también la local, que muchas veces determina la existencia de amenazas particulares del sitio, tales como: potencial sismicidad localizada o inducida por presencia de algún depósito de agua cercano, fallas geológicas que pueden ocasionar fenómenos de licuación (pérdida súbita de resistencia al cortante de suelos saturados debido al incremento de presiones de poros ocasionado por vibraciones del terreno por acción sísmica), o presencia de suelos colapsables o expansivos cuya aparición se encuentra determinada por la geología de la zona.

8. Aspectos Sísmicos:

Prácticamente todos los códigos de diseño a nivel mundial suministran una clasificación en función de la amenaza sísmica existente en las diferentes regiones del país (nulas, bajas, intermedia y elevada), lo cual permite asignar un coeficiente de aceleración horizontal y vertical del terreno, que al ser multiplicado por la masa sísmica de la edificación nos permite estimar su respuesta y poder así efectuar su diseño estructural. Dentro de este renglón existe un criterio de clasificación universal de suma importancia, que permite estimar la respuesta más realista de la edificación ante un evento sísmico, y se trata de la forma espectral del terreno que depende de la condición geotécnica del sitio (suelos densos o duros Vs suelos duros o compactos). Una forma de caracterizar la forma espectral del terreno, es a través de correlación con ensayos de campo tales como: el ensayo de penetración estándar (SPT), el ensayo de penetración cónica (CPT) o el ensayo de índice de calidad de la roca (RQD). Ahora bien, esto quiere decir que el Informe Geotécnico nos va a permitir estimar la repuesta sísmica real de la edificación, en vista de que vamos a poder identificar el comportamiento esperado del sitio en el que nos vamos apoyar, según los lineamientos fijados por el código de diseño sísmico que aplique en el proyecto.

9. Presencia de Nivel Freático y/o Aguas Subterráneas:

Se identifican las profundidades de aguas detectadas en los sondeos, acotando que estos niveles se localizaron en una fecha y condición meteorológica determinada. Esta información será de suma utilidad para el ingeniero geotécnico al momento de emitir recomendaciones de diseño y construcción de los sistemas de fundación, y servirá de alerta a la hora de efectuar excavaciones a cielo abierto y cuáles son las medidas de protección que deben ser acatadas. Esto permitirá identificar posibles patrones de licuación y determinar que tanto pudiese verse afectada la sensibilidad del terreno desde el punto de vista de capacidad portante.

10. Análisis de Resultados de Campo y Laboratorio:

En función de los resultados obtenidos en campo y laboratorio, se emite un análisis de tipo cuantitativo y cualitativo que permitirá construir una matriz del comportamiento geotécnico del sitio.

11. Evaluación de la Capacidad Portante del Terreno en función del Sistema de Fundación Seleccionado (Diseño por Resistencia):
Se debe dejar claro que el terreno por sí sólo no va a manifestar una capacidad portante admisible determinada, sino que va a depender del tipo de sistema de fundación seleccionado y de la geometría del mismo, es decir, es incorrecto decir: «ese suelo tiene una capacidad portante de 1 kgf/cm2”, lo correcto sería decir: “el terreno manifiesta una capacidad portante de 1 kgf/cm2 para un sistema de fundación diseñado con zapatas de dimensiones 1.5 m x 1.5 m y para una profundidad de desplante (Df) de 1.8 m”; en vista de que cualquier variación en el tipo de cimentación, geometría, dimensiones en planta y profundidad de desplante determinarán una capacidad portante diferente del sistema “suelo-fundación”. En este punto es importante que el ingeniero geotécnico posea un estimado de las cargas de la edificación, con la finalidad de seleccionar el sistema de fundación más adecuado y pueda además reportar un abanico de posibilidades geométricas y de profundidad para el rango de cargas actuantes. De forma ilustrativa podemos indicar que si el sistema de fundación se compone de zapatas, entonces se deberá elaborar una tabla con diferentes tamaños de zapatas y profundidades de desplante que permita abarcar el rango de cargas actuantes, de forma tal que el ingeniero estructural pueda seleccionar las opciones que mejor se adapten a los requerimientos del proyecto. Bajo el mismo esquema, si se trata de un sistema de fundación con pilotes se deberá disponer de una tabla con diferentes diámetros y longitudes, con la finalidad de seleccionar la mejor solución en función del nivel de carga actuante.

12. Cálculo de Asentamientos Esperados (Diseño por Rigidez):

La rigidez infinita no existe en el terreno de fundación, es decir, todos los sistemas de fundación siempre van a sufrir algún nivel de asentamiento, por lo que se hace necesario que se reporte el nivel de asentamiento o deformación esperada del terreno, en función del esfuerzo actuante y la geometría del sistema de fundación seleccionado. La distorsión angular se define como la relación entre el asentamiento diferencial que se origina entre dos apoyos y la distancia que los separa. Si se dispone de información relacionada con la magnitud de los asentamientos esperados y luces promedio del proyecto, se podrán estimar las distorsiones esperadas y se podrán fijar límites máximos de distorsión en función de la arquitectura del proyecto, tipo de acabados y configuración de miembros estructurales. No es lo mismo fijar una distorsión angular máxima para un proyecto donde predominan las fachadas de vidrio que para una edificación donde predomina la mampostería.

13. Conclusiones:

Deben ser claras y precisas, sin ambigüedades. Se debe reportar la conclusión de cada aspecto observado en los puntos anteriores; destacando las prohibiciones que apliquen y que puedan estar referidas al uso de un sistema de fundación en particular o una profundidad límite para algún tipo de excavación. Se concluye en función de los aspectos geológicos, geotécnicos, estructurales, sísmicos, hidráulicos, hidrológicos, y cualquier otro que sea determinante en la solución que deba adoptarse en el proyecto.

14. Recomendaciones:

De tipo geotécnico y estructural para las diferentes propuestas de cimentación suministradas en el informe, recomendaciones de excavaciones, métodos constructivos, control de deformaciones y distorsión angular, medidas de protección en los procesos constructivos, técnicas para el mejoramiento o estabilización de suelos que puediesen estar sometidos a algún tipo de amenaza de tipo geológica o geotécnica, tales como presencia de suelos colapsables, licuables o expansivos. En vista de lo amplio que pueden llegar a ser las recomendaciones, se sugiere elaborar renglones para las diferentes especialidades involucradas en el proyecto, de forma tal que el informe geotécnico posea un enfoque totalmente práctico y funcional.

15. Anexos:

Es tradición colocar en los anexos: el croquis de ubicación de los sondeos, el perfil probable del terreno, el perfil estratigráfico utilizado en el diseño de las cimentaciones, los registros de campo de los sondeos efectuados, planta tipo de la edificación, las planillas de los ensayos de laboratorio, y cualquier otra información que permita complementar los aspectos reportados en el informe. Si se dispone de un extracto de una publicación donde se indiquen técnicas, sugerencias o consejos para efectuar alguno de los procesos contemplados en el proyecto, entonces ¿por qué no incluirlo también?. El informe geotécnico debe ser una guía de ejecución, de la misma forma como lo son los planos de detalles, la memoria descriptiva o incluso el cómputo métrico de obras.

El sistema “suelo-fundación” debe ser analizado como un todo, donde los aspectos geotécnicos y estructural se convergen en los puntos de apoyo de nuestras edificaciones. La investigación geotécnica es una actividad de ejecución obligatoria cuyo producto será el Estudio Geotécnico, que deberá ser utilizado por los profesionales involucrados en el proyecto tanto en la fase de concepción del mismo como en su fase de construcción.



Materiales de construcción:

Un material de construcción es una materia prima o con más frecuencia un producto manufacturado, empleado en la construcción de edificios u obras de ingeniería civil.

Arena
Se emplea arena como parte de morteros y hormigones




Arcilla
La arcilla es químicamente similar a la arena: contiene, además de dióxido de silicio, óxidos de aluminio y agua. Su granulometría es mucho más fina, y cuando está húmeda es de consistencia plástica. La arcilla mezclada con polvo y otros elementos del propio suelo forma el barro, material que se utiliza de diversas formas:
Barro, compactado "in situ" produce tapial
Cob, mezcla de barro, arena y paja que se aplica a mano para construir muros.
Adobe, ladrillos de barro, o barro y paja, secados al sol.



Piedra
La piedra se puede utilizar directamente sin tratar, o como materia prima para crear otros materiales. Entre los tipos de piedra más empleados en construcción destacan:

Granito, tradicionalmente usado en toda clase de muros y edificaciones, actualmente se usa principalmente en suelos (en forma de losas), aplacados y encimeras. De esta piedra suele fabricarse el:

Adoquín, ladrillo de piedra con el que se pavimentan algunas calzadas.
Mármol, piedra muy apreciada por su estética, se emplea en revestimientos. En forma de losa o baldosa.
Pizarra, alternativa a la teja en la edificación tradicional. También usada en suelos.
Caliza, piedra más usada en el pasado que en la actualidad, para paredes y muros.
Arenisca, piedra compuesta de arena cementada, ha sido un popular material de construcción desde la antigüedad.


Metálicos
Los más utilizados son el hierro y el aluminio. El primero se alea con carbono para formar:

Acero, empleado para estructuras, ya sea por sí solo o con hormigón, formando entonces el hormigón armado.
Perfiles metálicos
Redondos
Acero inoxidable
Acero cortén




Orgánicos
Fundamentalmente la madera y sus derivados, aunque también se utilizan o se han utilizado otros elementos orgánicos vegetales, como paja, bambú, corcho, lino, elementos textiles o incluso pieles animales.

Madera
Contrachapado
OSB
Tablero aglomerado
Madera cemento
Linóleo suelo laminar creado con aceite de lino y harinas de madera o corcho sobre una base de tela.
Guadua
Ejemplo de análisis de suelos:

































































martes, 1 de noviembre de 2016

Instalaciones de voz,datos y eléctricas en edificios




Qué es una instalaciones de voz y de datos:


El concepto de cableado estructurado, red de voz y datos, hace referencia al soporte físico de un sistema de comunicaciones que posee unas características determinadas como son:


Disponer de tomas estandarizadas para voz, datos u otros servicios telemáticos.

Las tomas son distribuidas por múltiples puntos de la empresa previendo futuras conexiones y ampliaciones de la red de voz y datos.

Este sistema puede distribuirse en una planta, en un edificio o en un campus de edificios.

La administración se centraliza en puntos donde confluyen distintos tramos de cable (UTP, FTP, ETC.) y/o Fibra óptica(FO).

Los cables, la FO, los conectores así como los tramos completos (enlaces y canales) están normalizados.



Eléctrica en edificaciones:

El Instalador Electricista en Edificaciones es el operario calificado que efectúa trabajos de tendido de red de electroductos, alambrado y cableado de circuitos, conexión de accesorios, equipos de iluminación, tableros eléctricos así como sistemas y equipos especiales utilizados en las edificaciones, considerando los conocimientos tecnológicos que tengan directa incidencia y estén relacionados con las actividades realizadas, seleccionando con criterio técnico los materiales, herramientas y equipos necesarios para efectuar su labor, de acuerdo a los planos de instalaciones eléctricas, siguiendo normas de seguridad y calidad establecidas.



Ejemplo: